3.375 \(\int \frac{\sqrt{\sec (c+d x)}}{(a+a \cos (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=117 \[ \frac{3 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \tan ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{\cos (c+d x)} \sqrt{a \cos (c+d x)+a}}\right )}{2 \sqrt{2} a^{3/2} d}-\frac{\sin (c+d x)}{2 d \sqrt{\sec (c+d x)} (a \cos (c+d x)+a)^{3/2}} \]

[Out]

(3*ArcTan[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])]*Sqrt[Cos[c + d*x]]*Sqr
t[Sec[c + d*x]])/(2*Sqrt[2]*a^(3/2)*d) - Sin[c + d*x]/(2*d*(a + a*Cos[c + d*x])^(3/2)*Sqrt[Sec[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.21931, antiderivative size = 117, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2, Rules used = {4222, 2766, 12, 2782, 205} \[ \frac{3 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \tan ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{\cos (c+d x)} \sqrt{a \cos (c+d x)+a}}\right )}{2 \sqrt{2} a^{3/2} d}-\frac{\sin (c+d x)}{2 d \sqrt{\sec (c+d x)} (a \cos (c+d x)+a)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[Sec[c + d*x]]/(a + a*Cos[c + d*x])^(3/2),x]

[Out]

(3*ArcTan[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])]*Sqrt[Cos[c + d*x]]*Sqr
t[Sec[c + d*x]])/(2*Sqrt[2]*a^(3/2)*d) - Sin[c + d*x]/(2*d*(a + a*Cos[c + d*x])^(3/2)*Sqrt[Sec[c + d*x]])

Rule 4222

Int[(csc[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Sin[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u,
 x]

Rule 2766

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[(b^2*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1))/(a*f*(2*m + 1)*(b*c - a*d)), x] + Dis
t[1/(a*(2*m + 1)*(b*c - a*d)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[b*c*(m + 1) - a*d*
(2*m + n + 2) + b*d*(m + n + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d,
0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] &&  !GtQ[n, 0] && (IntegersQ[2*m, 2*n] || (IntegerQ
[m] && EqQ[c, 0]))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2782

Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> D
ist[(-2*a)/f, Subst[Int[1/(2*b^2 - (a*c - b*d)*x^2), x], x, (b*Cos[e + f*x])/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c
+ d*Sin[e + f*x]])], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 -
 d^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{\sqrt{\sec (c+d x)}}{(a+a \cos (c+d x))^{3/2}} \, dx &=\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)} (a+a \cos (c+d x))^{3/2}} \, dx\\ &=-\frac{\sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2} \sqrt{\sec (c+d x)}}+\frac{\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{3 a}{2 \sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}} \, dx}{2 a^2}\\ &=-\frac{\sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2} \sqrt{\sec (c+d x)}}+\frac{\left (3 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}} \, dx}{4 a}\\ &=-\frac{\sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2} \sqrt{\sec (c+d x)}}-\frac{\left (3 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{2 a^2+a x^2} \, dx,x,-\frac{a \sin (c+d x)}{\sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}}\right )}{2 d}\\ &=\frac{3 \tan ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}}\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}}{2 \sqrt{2} a^{3/2} d}-\frac{\sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2} \sqrt{\sec (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.476787, size = 99, normalized size = 0.85 \[ -\frac{\tan \left (\frac{1}{2} (c+d x)\right ) \left (3 \cot ^2\left (\frac{1}{2} (c+d x)\right ) \sqrt{2-2 \sec (c+d x)} \tanh ^{-1}\left (\sqrt{\sin ^2\left (\frac{1}{2} (c+d x)\right ) (-\sec (c+d x))}\right )+2\right )}{4 a d \sqrt{\sec (c+d x)} \sqrt{a (\cos (c+d x)+1)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[Sec[c + d*x]]/(a + a*Cos[c + d*x])^(3/2),x]

[Out]

-((2 + 3*ArcTanh[Sqrt[-(Sec[c + d*x]*Sin[(c + d*x)/2]^2)]]*Cot[(c + d*x)/2]^2*Sqrt[2 - 2*Sec[c + d*x]])*Tan[(c
 + d*x)/2])/(4*a*d*Sqrt[a*(1 + Cos[c + d*x])]*Sqrt[Sec[c + d*x]])

________________________________________________________________________________________

Maple [A]  time = 0.408, size = 151, normalized size = 1.3 \begin{align*} -{\frac{\sqrt{2} \left ( \left ( \cos \left ( dx+c \right ) \right ) ^{2}-1 \right ) }{4\,{a}^{2}d \left ( \sin \left ( dx+c \right ) \right ) ^{3}}\sqrt{ \left ( \cos \left ( dx+c \right ) \right ) ^{-1}}\sqrt{a \left ( 1+\cos \left ( dx+c \right ) \right ) } \left ( \sqrt{2}\cos \left ( dx+c \right ) \sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}-3\,\arcsin \left ({\frac{-1+\cos \left ( dx+c \right ) }{\sin \left ( dx+c \right ) }} \right ) \sin \left ( dx+c \right ) -\sqrt{2}\sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}} \right ) \sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^(1/2)/(a+cos(d*x+c)*a)^(3/2),x)

[Out]

-1/4/d*2^(1/2)/a^2*(1/cos(d*x+c))^(1/2)*(a*(1+cos(d*x+c)))^(1/2)*(2^(1/2)*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)
))^(1/2)-3*arcsin((-1+cos(d*x+c))/sin(d*x+c))*sin(d*x+c)-2^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2))*(cos(d*x+c
)/(1+cos(d*x+c)))^(1/2)/sin(d*x+c)^3*(cos(d*x+c)^2-1)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{\sec \left (d x + c\right )}}{{\left (a \cos \left (d x + c\right ) + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate(sqrt(sec(d*x + c))/(a*cos(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

Fricas [A]  time = 1.87113, size = 354, normalized size = 3.03 \begin{align*} -\frac{3 \, \sqrt{2}{\left (\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1\right )} \sqrt{a} \arctan \left (\frac{\sqrt{2} \sqrt{a \cos \left (d x + c\right ) + a} \sqrt{\cos \left (d x + c\right )}}{\sqrt{a} \sin \left (d x + c\right )}\right ) + 2 \, \sqrt{a \cos \left (d x + c\right ) + a} \sqrt{\cos \left (d x + c\right )} \sin \left (d x + c\right )}{4 \,{\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

-1/4*(3*sqrt(2)*(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)*sqrt(a)*arctan(sqrt(2)*sqrt(a*cos(d*x + c) + a)*sqrt(cos
(d*x + c))/(sqrt(a)*sin(d*x + c))) + 2*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))*sin(d*x + c))/(a^2*d*cos(d*
x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{\sec{\left (c + d x \right )}}}{\left (a \left (\cos{\left (c + d x \right )} + 1\right )\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**(1/2)/(a+a*cos(d*x+c))**(3/2),x)

[Out]

Integral(sqrt(sec(c + d*x))/(a*(cos(c + d*x) + 1))**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{\sec \left (d x + c\right )}}{{\left (a \cos \left (d x + c\right ) + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate(sqrt(sec(d*x + c))/(a*cos(d*x + c) + a)^(3/2), x)